Semantic Interoperability Issues and Approaches in the IoT.est Project

IERC AC4 Semantic interoperability Workshop
19 June, 2012, Venice, Italy

Payam Barnaghi
Centre for Communication Systems Research
University of Surrey
Guildford, UK
Consortium

- 8 partners, 7 countries
 - Industry: PTIN, ATOS, SIE
 - SME: TT, AI
 - Research Centre: NICT
 - Higher Education: UNIS, UASO

- Project Lead: CCSR, University of Surrey

- Duration: 36 months
IoT.est – a quick snapshot

• IoT.est will develop a test-driven service creation environment (SCE) for Internet of Things enabled business services.

• The SCE will enable the acquisition of data and control/actuation of sensors, objects and actuators.

• The project will provide the means and tools to define and instantiate IoT services that exploit data across domain boundaries;

• IoT.est will facilitate run-time monitoring and will enable autonomous service adaptation to environment/context and network parameter (e.g. QoS) changes.
IoT.est: The Key issues

• IoT enabled Business Services: **Machine interpretable (semantic) descriptions**

• Service Composition: **A Knowledge based approach**

• Service Components: **Re-usable, interoperable and adaptive**

• Abstraction: **Mapping to heterogeneous platforms and large scale deployment**

• Testing (Design Time): **Automated generation of tests**

• Monitoring (Run-Time): **Context-aware service adaptation**

• **This requires**: machine interpretable description + interoperable domain knowledge + automated discovery and composition, reasoning and decision making
(1a) Semantic and data models in IoT.est

- **Service model**
 - IoT.est service model, IoT-A service model, OWL-S

- **Entity and resource models**
 - IoT models, W3C SSN

- **Test models and Test component descriptions**

- **Common models and knowledge-based to describe the domain knowledge (e.g. LOD)**
 - Linked Sensor (IoT) data approach
(1b) Applications to use and/or need for semantic modeling practices

• Linked data approach
 – using URI’s as names for things;
 – using HTTP URI’s to look up those names;
 – providing useful RDF information related to URI’s
 – including RDF statements that link to other URI’s

• Access and discovery mechanisms and interfaces
 – Logical reasoning and querying large scale data

• Ontology alignment and ontology mapping
 – Semi-automated and manual alignment
 – Developing alignment and enhancement tools
(1c) Languages (formal/non-formal), Technologies (toolkits, SW tools), protocols enabling semantic interoperability

- RDF/OWL representations
 - We are also investigating alternative representation and reasoning mechanisms for constrained environments (e.g. Binary RDF, IETF approach)

- Ontology design tools
 - Protégé

- Common Interface and access end-points
 - Standard interface and service models (e.g. OGC SoS, SPARQL end-points, etc).

- Ontology mapping and alignment
 - Ontology engineering phase
 - Automated tools
(1d) Possible contributions/inputs to AC4

• Comprehensive semantic models for IoT
 – Integrated service, entity, resource models
 – Test models and test components
• Alignment tools and reference models
• Practical uses-case and methodology to create linked IoT data.
References for semantic interoperability

IoT.est project: Internet of Things Environment for Service Creation and Testing

http://ict-iotest.eu/iotest/